Visual Object Tracking Based on Cross-Modality Gaussian-Bernoulli Deep Boltzmann Machines with RGB-D Sensors

نویسندگان

  • Mingxing Jiang
  • Zhigeng Pan
  • Zhenzhou Tang
چکیده

Visual object tracking technology is one of the key issues in computer vision. In this paper, we propose a visual object tracking algorithm based on cross-modality featuredeep learning using Gaussian-Bernoulli deep Boltzmann machines (DBM) with RGB-D sensors. First, a cross-modality featurelearning network based on aGaussian-Bernoulli DBM is constructed, which can extract cross-modality features of the samples in RGB-D video data. Second, the cross-modality features of the samples are input into the logistic regression classifier, andthe observation likelihood model is established according to the confidence score of the classifier. Finally, the object tracking results over RGB-D data are obtained using aBayesian maximum a posteriori (MAP) probability estimation algorithm. The experimental results show that the proposed method has strong robustness to abnormal changes (e.g., occlusion, rotation, illumination change, etc.). The algorithm can steadily track multiple targets and has higher accuracy.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning

Fault diagnosis is important for the maintenance of rotating machinery. The detection of faults and fault patterns is a challenging part of machinery fault diagnosis. To tackle this problem, a model for deep statistical feature learning from vibration measurements of rotating machinery is presented in this paper. Vibration sensor signals collected from rotating mechanical systems are represente...

متن کامل

Notes on Boltzmann Machines

I. INTRODUCTION Boltzmann machines are probability distributions on high dimensional binary vectors which are analogous to Gaussian Markov Random Fields in that they are fully determined by first and second order moments. A key difference however is that augmenting Boltzmann machines with hidden variables enlarges the class of distributions that can be modeled, so that in principle it is possib...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Unifying the Stochastic Spectral Descent for Restricted Boltzmann Machines with Bernoulli or Gaussian Inputs

Stochastic gradient descent based algorithms are typically used as the general optimization tools for most deep learning models. A Restricted Boltzmann Machine (RBM) is a probabilistic generative model that can be stacked to construct deep architectures. For RBM with Bernoulli inputs, non-Euclidean algorithm such as stochastic spectral descent (SSD) has been specifically designed to speed up th...

متن کامل

Multiple Objects Fusion Tracker Using a Matching Network for Adaptively Represented Instance Pairs

Multiple-object tracking is affected by various sources of distortion, such as occlusion, illumination variations and motion changes. Overcoming these distortions by tracking on RGB frames, such as shifting, has limitations because of material distortions caused by RGB frames. To overcome these distortions, we propose a multiple-object fusion tracker (MOFT), which uses a combination of 3D point...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2017